Physics – Grade 10

Electricity

Unit One

Chapter 4 – Resistors

Prepared & Presented by: Mr. Mohamad Seif

Think then Solve

Consider the circuit represented in the adjacent figure.

G is a generator that maintains across its terminals a constant voltage $V_{\rm PN}=12{\rm V},$ (A) is an ammeter of negligible resistance.

 (R_1) is a resistor of resistance $R_1 = 30\Omega$; and R_2 is a resistor of resistance R_2 , and (K) is a switch.

When we close (K), the ammeter (A) indicates 0.6 A

Part A: Determination of the value of V_{RC}:

- 1. The voltage across (A) is zero. Why?
- 2. The voltage across (K) is zero. Why?
- 3. Prove that the voltage $V_{\rm BC}=12{\rm V}$.

Be Smart ACADEMY

 $V_{PN} = 12V$; ammeter of negligible resistance; $R_1 =$

 30Ω ; $R_2 = ?$; I = 0.6A.

- 1. The voltage across (A) is zero. Why? Since the ammeter is of negligible resistance, then the voltage across it is zero.
- 2. The voltage across (K) is zero. Why? Because the switch is closed, then the voltage across it is zero.

 $V_{PN} = 12V$; ammeter of negligible resistance; $R_1 \neq 0.000$;

$$R_2 = ?; I = 0.6A.$$

3. Prove that the voltage $V_{\rm BC} = 12$ V.

$$V_{\rm PN} = V_{\rm PB} + V_{\rm BC} + V_{\rm CN}$$

$$12V = 0V + V_{BC} + 0V_{EMY}$$

$$V_{BC} = 12V$$

Be Smart ACADEMY

 $V_{PN} = 12V$; ammeter of negligible resistance; $R_1 = 200$. $R_1 = 200$

 30Ω ; $R_2 = ?$; I = 0.6A.

Part B: Determination of the value of R2:

- 1. Determine the value of the current I₁through R₁
- 2. Deduce the value of the current I₂through R₂
- 3. Show that the value of R_2 is 60Ω .

 $V_{PN} = 12V$; ammeter of negligible resistance; R_1

$$= 30\Omega$$
; $R_2 = ?$; $I = 0.6A$.

1. Determine the value of the current I₁through R₁

 R_1 and R_2 are connected in parallel then:

$$V_{\mathrm{BC}} = V_1 = V_2 = 12\mathrm{V}$$

Using ohm's law then: $V_1 = R_1 \times I_1$

$$I_1 = \frac{V_1}{R_1} = \frac{12}{30}$$

$$I_1 = 0.4A$$

 $V_{PN} = 12V$; ammeter of negligible resistance; R_1

$$= 30\Omega$$
; $R_2 = ?$; $I = 0.6A$.

2. Deduce the value of the current I_2 through R_2

 R_1 and R_2 are connected in parallel then:

$$I = I_1 + I_2$$

$$I - I_1 = I_2$$

$$0.6A - 0.4A = I_2$$

$$ACADEMY$$

 $I_2 = 0.2A$

Be Smart ACADEMY

3. Show that the value of R_2 is 60Ω .

$$V_2 = R_2 \times I_2$$

$$R_2 = \frac{V_2}{I_2} = \frac{12V}{0.2A}$$

$$R_2 = \begin{array}{c} \textbf{35e.3maxt} \\ \textbf{400CADEMY} \end{array}$$

Part C: Equivalent resistance:

- R_1 and R_2 can be replaced by a single resistor of resistance (R_{eq}) .
- 1. Calculate the equivalent resistance by two methods.
- 2. An instrument allows a direct measurement of R. Name this instrument.

1. Calculate the equivalent resistance by two methods.

First method:

$$V_{\rm PN} = R_{eq} \times I$$

$$R_{eq} = \frac{V_{PN}}{I} = \frac{12V}{0.6}$$

$$\mathbf{R_{eq}} = \mathbf{20}\Omega$$

Second method:

$$R_{eq} = \frac{R_1 \times R_2}{R_1 + R_2}$$

$$SR_{eq} = \frac{30 \times 60}{30 + 60}$$

$$R_{eq} = \frac{1800}{900}$$

$$\mathbf{R_{eq}} = \mathbf{20}\Omega$$

Be Smart ACADEMY

2.An instrument allows a direct measurement of R. Name this instrument.

The instrument that measures directly is ohmmeter

Be Smart ACADEMY

Think then Solve

The adjacent circuit diagram shows the combination of four resistors $R_1=R_3=R_4=20\Omega$ and $R_2=10\Omega$ are connected to a generator of voltage $V_{PN}=24V$.

- 1. Show that the resistance of the equivalent resistor to these four resistors is $R_{eq} = 10\Omega$.
- 2. Calculate I the intensity of the current delivered by the generator.
- 3. Calculate the intensity of the current traversing each resistor.

Be Smart ACADEMY

- 4. Determine V_{AC} , V_{AB} and V_{BC} .
- 5. It is required to replace R_2 by a conducting wire made of a metal of resistivity $\rho = 4 \times 10^{-5} \Omega m$ and of cross-sectional area $S = 1mm^2$.
- Calculate the length of this wire so that the resistance is kept constant.

ACADEMY

- $V_{\rm PN} = 24V$; $R_1 = R_3 = R_4 = 20\Omega$ and $R_2 = 10\Omega$.
- 1. Show that the resistance of the equivalent resistor to these four resistors is $R_{eq}=10\Omega$.
- R₃ and R₄ connected in parallel then:

$$R_A = \frac{R_3 \times R_4}{R_3 + R_4} = \frac{20 \times 20}{20 + 20}$$

$$R_A = \frac{400}{40} = 10\Omega$$

R₂ and R_A connected in series then:

R_B and R₁ connected in parallel:

$$R_{eq} = \frac{R_1 \times R_B}{R_1 + R_B} = \frac{20 \times 20}{20 + 20}$$

$$R_{eq} = \frac{400}{40} = 10\Omega$$

ACADEMP I + Req

 $V_{\rm PN} = 24 {\rm V}; \, {\rm R}_1 = {\rm R}_3 = {\rm R}_4 = 20 \Omega \, {\rm and} \, {\rm R}_2 = 10 \Omega.$

2.Calculate I the intensity of the current delivered by the generator.

$$V_{PN} = R_{eq} \times I$$

$$I = \frac{V_{PN}}{R_{eq}} \frac{Be Smart}{ACADEMY}$$

$$I=\frac{24}{10}$$

$$I = 2.4A$$

$$V_{\rm PN} = 24V$$
; $R_1 = R_3 = R_4 = 20\Omega$ and $R_2 = 10\Omega$.

2.Calculate the intensity of the current traversing each resistor

R₁ parallel with the generator then:

use law of uniqueness of voltage:

$$V_{PN} = V_{DE} = 24V_{e}$$

$$U_{DE} = R_{1} \times I_{1} \triangle C \triangle D$$

$$I_1 = \frac{U_{DE}}{R_1} = \frac{24}{20}$$

$$I_1 = 1.2A$$

 $V_{\rm PN} = 24V$; $R_1 = R_3 = R_4 = 20\Omega$ and $R_2 = 10\Omega$.

Using law of addition of current then:

$$\mathbf{I} = \mathbf{I_1} + \mathbf{I_2}$$

$$2.4A = 1.2A + I_2$$

$$2.4 - 1.2 = 126 Omat$$

$$L_2 = 1.2 A CADEMY$$

$$V_{\rm PN} = 24V; R_1 = R_3 = R_4 = 20\Omega \text{ and } R_2 = 10\Omega.$$

Since
$$R_3$$
 and R_4 then: $I_3 = I_4$

$$I_2 = I_3 + I_4$$

$$1.2A = I_3 + I_3$$

$$1.2A = 2I_3$$

$$= \frac{ACADEMY}{I_4}$$

$$I_3 = \frac{1.2}{2}$$

$$I_3 = I_4 = 0.6A$$

$$I_3 = I_4 = 0.6A$$

4A; Be Smart ACADEMY

 $V_{\text{PN}} = 24V$; $R_1 = R_3 = R_4 = 20\Omega$ and $R_2 = 10\Omega$; I = 2.4A; I = 1.2A; I = 1.2A; I = 0.6A and I = 0.6A

 $I_1 = 1.2A$; $I_2 = 1.2A$; $I_3 = 0.6A$ and $I_4 = 0.6A$

4. Determine V_{AC} , V_{AB} and V_{BC} .

$$V_{AC} = R_B \times I_1$$

$$V_{AC} = 20 \times 1.2$$

$$V_{AC} = 24VACADEM$$

 $V_{\rm PN} = 24 {\rm V}; \, {\rm R}_1 = {\rm R}_3 = {\rm R}_4 = 20 \Omega \, {\rm and} \, {\rm R}_2 = 10 \Omega; \, {\rm I} = 2.4 {\rm A};$

 $I_1 = 1.2A$; $I_2 = 1.2A$; $I_3 = 0.6A$ and $I_4 = 0.6A$

4. Determine V_{AC} , V_{AB} and V_{BC} .

$$V_{AB} = R_2 \times I_2$$

$$V_{AB} = 10 \times 1.2$$

$$V_{AB} = 12V$$

$$V_{PN} = 24V$$
; $R_1 = R_3 = R_4 = 20\Omega$ and $R_2 = 10\Omega$; $I =$

2. 4A;
$$I_1 = 1.2A$$
; $I_2 = 1.2A$; $I_3 = 0.6A$ and $I_4 = 0.6A$

4. Determine V_{AC} , V_{AB} and V_{BC} .

$$V_{BC} = R_3 \times I_3 = 20 \times 0.6$$

$$V_{BC} = 12V$$

Second method:

ACADEM^{*}

$$V_{AC} = V_{AB} + V_{BC}$$

$$24V = 12V + V_{BC}$$

$$V_{BC} = 12V$$

4. It is required to replace R_2 by a conducting wire made of a metal of resistivity $\rho = 4 \times 10^{-5} \Omega m$ and of cross-sectional area $S = 1mm^2$. Calculate the length of this wire so that the resistance is kept constant.

$$R_2 = rac{
ho imes L}{S}$$
 $rac{R_2}{1} = rac{
ho imes L}{S}$
 $R_2 imes S =
ho imes L$

$$L = \frac{R_2 \times S}{\rho}$$

$$Smath 10 \times 1 \times 10^{-6}$$

$$ADEM 14 \times 10^{-4}$$

L = 0.025m = 2.5cm

Think then Solve

Consider the electric circuit that consists of a dry cell of voltage $V_{PN}=12V$ and three resistors $R_1=1.6\Omega,\,R_2=4\Omega$ and $R_3=6\Omega$ as shown in figure 1.

- 1. Calculate the equivalent resistance of the circuit.
- 2. Calculate the main current I.
- 3. Calculate the voltage V_{AB} across R_1 .
- 4.Determine V_{BC} then deduce the voltage V_{BD} across R_3 .

- Be Smart ACADEMY
- 5. Calculate the current I_2 traversing R_2 and the current I_3 traversing R_3
- 6. Calculate the power consumed by R_1 . Deduce the energy dissipated in 1 minute.
- 7. In what form does this energy appear?

ACADEMY

$$V_{PN} = 12V$$
; $R_1 = 1.6\Omega$; $R_2 = 4\Omega$ and $R_3 = 6\Omega$

1. Calculate the equivalent resistance of the circuit.

R₂ and R₃ are connected in parallel then:

$$R_A = \frac{R_2 \times R_3}{R_2 + R_3} = \frac{4 \times 6}{4 + 6} = \frac{24}{10} = 2.4\Omega$$

R_A and R₁ are connected in series then:

$$R_{eq} = R_1 + R_A DEMY$$

$$R_{eq} = 1.6 + 2.4$$

$$R_{eq} = 4\Omega$$

$V_{PN} = 12V$; $R_1 = 1.6\Omega$; $R_2 = 4\Omega$ and $R_3 = 6\Omega$

2. Calculate the main current I.

$$U_{PN} = R_{eq}I$$

$$I = \frac{U_{PN}}{R_{eq}} = \frac{12V}{4}$$

$$I = 3A A A CADEMY$$

$V_{PN} = 12V$; $R_1 = 1.6\Omega$; $R_2 = 4\Omega$ and $R_3 = 6\Omega$

3. Calculate the voltage V_{AB} across R_1 .

$$V_{AB} = R_1 I$$

$$V_{AB} = 1.6 \times 3$$

$V_{PN} = 12V$; $R_1 = 1.6\Omega$; $R_2 = 4\Omega$ and $R_3 = 6\Omega$

4. Determine $V_{\rm BC}$ then deduce the voltage across R_3 .

$$V_{PN} = V_{AB} + V_{BC} + V_{CN}$$

$$12V = 4.8V + V_{BC} + 0V$$

$$V_{BC} = 7.2V$$

Since R_2 and R_3 are in parallel:

 $V_{BC} = V_{BD} = 7.2V$ Law of uniqueness of voltage in parallel

$$V_{PN} = 12V$$
; $R_1 = 1.6\Omega$; $R_2 = 4\Omega$ and $R_3 = 6\Omega$

5. Calculate the current I_2 traversing R_2 and the current I_3 traversing R_3 .

$$V_{BC} = R_2 \times I_2$$
 $\downarrow I_1 = \frac{V_{BC}}{R_2} = \frac{7.2V}{4} = 1.8A$

At junction point B:

$$I = I_1 + I_2$$

$$3A - 1.8A = I_2$$

$$I_2 = 1.2A$$

$$V_{PN} = 12V$$
; $R_1 = 1.6\Omega$; $R_2 = 4\Omega$ and $R_3 = 6\Omega$

6. Calculate the power consumed by R_1 . Deduce the energy in joules, dissipated in 1 minute.

The consumed power is:

$$P = V_{AB} \times I$$

$$\mathbf{P} = \mathbf{4.8 \times 3} \mathbf{\Lambda} \mathbf{C} \mathbf{\Lambda} \mathbf{D}$$

$$P = 14.4W$$

The dissipated energy:

$$\mathbf{E} = \mathbf{P} \times \mathbf{t}$$

$$E = 14.4 \times (1 \times 60)$$

$$\mathbf{E} = \mathbf{864J}$$

Be Smart ACADEMY

7. In what form does this energy appear?

The energy appears by joules effect as a heat

Be Smart ACADEMY

